Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38543704

RESUMO

The continuous emergence of SARS-CoV-2 variants caused the persistence of the COVID-19 epidemic and challenged the effectiveness of the existing vaccines. The viral proteases are the most attractive targets for developing antiviral drugs. In this scenario, our study explores the use of HIV-1 protease inhibitors against SARS-CoV-2. An in silico screening of a library of HIV-1 proteases identified four anti-HIV compounds able to interact with the 3CLpro of SARS-CoV-2. Thus, in vitro studies were designed to evaluate their potential antiviral effectiveness against SARS-CoV-2. We employed pseudovirus technology to simulate, in a highly safe manner, the adsorption of the alpha (α-SARS-CoV-2) and omicron (ο-SARS-CoV-2) variants of SARS-CoV-2 and study the inhibitory mechanism of the selected compounds for cell-virus interaction. The results reported a mild activity against the viral proteases 3CLpro and PLpro, but efficient inhibitory effects on the internalization of both variants mediated by cathepsin B/L. Our findings provide insights into the feasibility of using drugs exhibiting antiviral effects for other viruses against the viral and host SARS-CoV-2 proteases required for entry.


Assuntos
COVID-19 , Cisteína Proteases , Humanos , SARS-CoV-2/genética , Inibidores de Proteases/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Cisteína Endopeptidases/genética , Proteases Virais , Simulação de Acoplamento Molecular
2.
Viruses ; 16(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257824

RESUMO

Epstein-Barr (EBV) is a human γ-herpesvirus that undergoes both a productive (lytic) cycle and a non-productive (latent) phase. The virus establishes enduring latent infection in B lymphocytes and productive infection in the oral mucosal epithelium. Like other herpesviruses, EBV expresses its genes in a coordinated pattern during acute infection. Unlike others, it replicates its DNA during latency to maintain the viral genome in an expanding pool of B lymphocytes, which are stimulated to divide upon infection. The reactivation from the latent state is associated with a productive gene expression pattern mediated by virus-encoded transcriptional activators BZLF-1 and BRLF-1. EBV is a highly transforming virus that contributes to the development of human lymphomas. Though viral vectors and mRNA platforms have been used to develop an EBV prophylactic vaccine, currently, there are no vaccines or antiviral drugs for the prophylaxis or treatment of EBV infection and EBV-associated cancers. Natural products and bioactive compounds are widely studied for their antiviral potential and capability to modulate intracellular signaling pathways. This review was intended to collect information on plant-derived products showing their antiviral activity against EBV and evaluate their feasibility as an alternative or adjuvant therapy against EBV infections and correlated oncogenesis in humans.


Assuntos
Produtos Biológicos , Infecções por Vírus Epstein-Barr , Magnoliopsida , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Linfócitos B , Carcinogênese , Antivirais
3.
Viruses ; 15(8)2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37631995

RESUMO

The search for alternative clinical treatments to fight resistance and find alternative antiviral treatments for the herpes simplex virus (HSV) is of great interest. Plants are rich sources of novel antiviral, pharmacologically active agents that provide several advantages, including reduced side effects, less resistance, low toxicity, and different mechanisms of action. In the present work, the antiviral activity of Californian natural raw (NRRE) and roasted unsalted (RURE) pistachio polyphenols-rich extracts was evaluated against HSV-1 using VERO cells. Two different extraction methods, with or without n-hexane, were used. Results showed that n-hexane-extracted NRRE and RURE exerted an antiviral effect against HSV-1, blocking virus binding on the cell surface, affecting viral DNA synthesis as well as accumulation of ICP0, UL42, and Us11 viral proteins. Additionally, the identification and quantification of phenolic compounds by RP-HPLC-DAD confirmed that extraction with n-hexane exclusively accumulated tocopherols, carotenoids, and xanthophylls. Amongst these, zeaxanthin exhibited strong antiviral activity against HSV-1 (CC50: 16.1 µM, EC50 4.08 µM, SI 3.96), affecting both the viral attachment and penetration and viral DNA synthesis. Zeaxanthin is a dietary carotenoid that accumulates in the retina as a macular pigment. The use of pistachio extracts and derivates should be encouraged for the topical treatment of ocular herpetic infections.


Assuntos
Herpesvirus Humano 1 , Pistacia , Chlorocebus aethiops , Animais , Zeaxantinas/farmacologia , DNA Viral , Células Vero , Antivirais/farmacologia , Carotenoides , Extratos Vegetais/farmacologia
4.
Nutrients ; 15(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36986275

RESUMO

The almond industry produces, by bleaching and stripping, two by-products: blanched skin (BS) and blanch water (BW). The aim of this study was to investigate the nutritional and polyphenolic profile, as well as the antioxidant, antimicrobial, antiviral, and potential prebiotic effects of BS and BW from three different Sicilian cultivars. The total phenols and flavonoids contents were ≥1.72 and ≥0.56 g gallic acid equivalents and ≥0.52 and ≥0.18 g rutin equivalents/100 g dry extract (DE) in BS and BW, respectively. The antioxidant activity, evaluated by 2,2-diphenyl-1-picrylhydrazyl scavenging ability, trolox equivalent antioxidant capacity, ferric-reducing antioxidant power, and oxygen radical absorbance capacity, was ≥3.07 and ≥0.83 g trolox equivalent/100 g DE in BS and BW, respectively. Isorhamnetin-3-O-glucoside was the most abundant flavonoid detected in both by-products. No antimicrobial effect was recorded, whereas BS samples exerted antiviral activity against herpes simplex virus 1 (EC50 160.96 µg/mL). BS also showed high fibre (≥52.67%) and protein (≥10.99) contents and low fat (≤15.35%) and sugars (≤5.55%), making it nutritionally interesting. The present study proved that the cultivar is not a discriminating factor in determining the chemical and biological properties of BS and BW.


Assuntos
Antioxidantes , Prunus dulcis , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Flavonoides/farmacologia , Flavonoides/química , Fenóis/farmacologia , Fenóis/química
5.
Biomolecules ; 13(2)2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36830607

RESUMO

The present study aims to assess the antioxidant and antiviral effectiveness of leaf extracts obtained from Olea europaea L. var. sativa and Olea europaea L. var. sylvestris. The total antioxidant activity was determined via both an ammonium phosphomolybdate assay and a nitric oxide radical inhibition assay. Both extracts showed reducing abilities in an in vitro system and in human HeLa cells. Indeed, after oxidative stress induction, we found that exposition to olive leaf extracts protects human HeLa cells from lipid peroxidation and increases the concentration of enzyme antioxidants such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase. Additionally, OESA treatment affects viral DNA accumulation more than OESY, probably due to the exclusive oleuropein content. In fact, subtoxic concentrations of oleuropein inhibit HSV-1 replication, stimulating the phosphorylation of PKR, c-FOS, and c-JUN proteins. These results provide new knowledge about the potential health benefits and mechanisms of action of oleuropein and oleuropein-rich extracts.


Assuntos
Neoplasias , Olea , Humanos , Antioxidantes/farmacologia , Olea/metabolismo , Células HeLa , Iridoides , Extratos Vegetais/farmacologia
6.
Biomolecules ; 12(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35053211

RESUMO

In the last decade, nanotechnological progress has generated new opportunities to improve the safety and efficacy of conventional anticancer therapies. Compared with other carriers, graphene nanoplatforms possess numerous tunable functionalities for the loading of multiple bioactive compounds, although their biocompatibility is still a debated concern. Recently, we have investigated the modulation of genes involved in cancer-associated canonical pathways induced by graphene engineered with cyclodextrins (GCD). Here, we investigated the GCD impact on cells safety, the HEp-2 responsiveness to Doxorubicin (DOX) and the cancer-related intracellular signalling pathways modulated by over time exposure to DOX loaded on GCD (GCD@DOX). Our studies evidenced that both DOX and GCD@DOX induced p53 and p21 signalling resulting in G0/G1 cell cycle arrest. A genotoxic behaviour of DOX was reported via detection of CDK (T14/Y15) activation and reduction of Wee-1 expression. Similarly, we found a cleavage of PARP by DOX within 72 h of exposure. Conversely, GCD@DOX induced a late cleavage of PARP, which could be indicative of less toxic effect due to controlled release of the drug from the GCD nanocarrier. Finally, the induction of the autophagy process supports the potential recycling of DOX with the consequent limitation of its toxic effects. Together, these findings demonstrate that GCD@DOX is a biocompatible drug delivery system able to evade chemoresistance and doxorubicin toxicity.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Ciclodextrinas , Doxorrubicina , Portadores de Fármacos , Grafite , Nanoestruturas , Neoplasias , Linhagem Celular Tumoral , Ciclodextrinas/química , Ciclodextrinas/farmacocinética , Ciclodextrinas/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Grafite/química , Grafite/farmacocinética , Grafite/farmacologia , Humanos , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
7.
Int J Nanomedicine ; 16: 5981-6002, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34511901

RESUMO

Gene therapy is a promising approach for the treatment of several diseases, such as chronic or viral infections, inherited disorders, and cancer. The cellular internalization of exogenous nucleic acids (NA) requires efficient delivery vehicles to overcome their inherent pharmacokinetic drawbacks, e.g. electrostatic repulsions, enzymatic degradation, limited cellular uptake, fast clearance, etc. Nanotechnological advancements have enabled the use of polymer-based nanostructured biomaterials as safe and effective gene delivery systems, in addition to viral vector delivery methods. Among the plethora of polymeric nanoparticles (NPs), this review will provide a comprehensive and in-depth summary of the polyester-based nanovehicles, including poly(lactic-co-glycolic acid) (PLGA) and polylactic acid (PLA) NPs, used to deliver a variety of foreign NA, e.g. short interfering RNA (siRNA), messenger RNA (mRNA), and plasmid DNA (pDNA). The article will review the versatility of polyester-based nanocarriers including their recent application in the delivery of the clustered, regularly-interspaced, short palindromic repeats/Cas (CRISPR/Cas) genome editing system for treating gene-related diseases. The remaining challenges and future trend of the targeted delivery of this revolutionary genome-editing system will be discussed. Special attention will be given to the pivotal role of nanotechnology in tackling emerging infections such as coronavirus disease 2019 (COVID-19): ground-breaking mRNA vaccines delivered by NPs are currently used worldwide to fight the pandemic, pushing the boundaries of gene therapy.


Assuntos
COVID-19 , Nanopartículas , Sistemas CRISPR-Cas , Técnicas de Transferência de Genes , Terapia Genética , Humanos , Poliésteres , SARS-CoV-2
8.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573283

RESUMO

The synthesis of α-fluorinated methyl ketones has always been challenging. New methods based on the homologation chemistry via nucleophilic halocarbenoid transfer, carried out recently in our labs, allowed us to design and synthesize a target-directed dipeptidyl α,α-difluoromethyl ketone (DFMK) 8 as a potential antiviral agent with activity against human coronaviruses. The ability of the newly synthesized compound to inhibit viral replication was evaluated by a viral cytopathic effect (CPE)-based assay performed on MCR5 cells infected with one of the four human coronaviruses associated with respiratory distress, i.e., hCoV-229E, showing antiproliferative activity in the micromolar range (EC50 = 12.9 ± 1.22 µM), with a very low cytotoxicity profile (CC50 = 170 ± 3.79 µM, 307 ± 11.63 µM, and 174 ± 7.6 µM for A549, human embryonic lung fibroblasts (HELFs), and MRC5 cells, respectively). Docking and molecular dynamics simulations studies indicated that 8 efficaciously binds to the intended target hCoV-229E main protease (Mpro). Moreover, due to the high similarity between hCoV-229E Mpro and SARS-CoV-2 Mpro, we also performed the in silico analysis towards the second target, which showed results comparable to those obtained for hCoV-229E Mpro and promising in terms of energy of binding and docking pose.


Assuntos
Antivirais/química , Coronavirus Humano 229E/metabolismo , Dipeptídeos/química , Cetonas/química , Células A549 , Antivirais/farmacologia , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Linhagem Celular , Proteínas M de Coronavírus/química , Proteínas M de Coronavírus/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Termodinâmica , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo , Replicação Viral/efeitos dos fármacos
9.
Int J Mol Sci ; 21(14)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664456

RESUMO

The graphene road in nanomedicine still seems very long and winding because the current knowledge about graphene/cell interactions and the safety issues are not yet sufficiently clarified. Specifically, the impact of graphene exposure on gene expression is a largely unexplored concern. Herein, we investigated the intracellular fate of graphene (G) decorated with cyclodextrins (CD) and loaded with doxorubicin (DOX) and the modulation of genes involved in cancer-associated canonical pathways. Intracellular fate of GCD@DOX, tracked by FLIM, Raman mapping and fluorescence microscopy, evidenced the efficient cellular uptake of GCD@DOX and the presence of DOX in the nucleus, without graphene carrier. The NanoString nCounter™ platform provided evidence for 34 (out of 700) differentially expressed cancer-related genes in HEp-2 cells treated with GCD@DOX (25 µg/mL) compared with untreated cells. Cells treated with GCD alone (25 µg/mL) showed modification for 16 genes. Overall, 14 common genes were differentially expressed in both GCD and GCD@DOX treated cells and 4 of these genes with an opposite trend. The modification of cancer related genes also at sub-cytotoxic G concentration should be taken in consideration for the rational design of safe and effective G-based drug/gene delivery systems. The reliable advantages provided by NanoString® technology, such as sensibility and the direct RNA measurements, could be the cornerstone in this field.


Assuntos
Ciclodextrinas/metabolismo , Doxorrubicina/metabolismo , Expressão Gênica/efeitos dos fármacos , Grafite/metabolismo , Nanoestruturas/administração & dosagem , Neoplasias/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Ciclodextrinas/farmacologia , Doxorrubicina/farmacologia , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Técnicas de Transferência de Genes , Humanos , Camundongos , Neoplasias/tratamento farmacológico
10.
Nanomaterials (Basel) ; 10(6)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466536

RESUMO

Graphene-based materials are intriguing nanomaterials with applications ranging from nanotechnology-related devices to drug delivery systems and biosensing. Multifunctional graphene platforms were proposed for the detection of several typical biomarkers (i.e., circulating tumor cells, exosomes, circulating nucleic acids, etc.) in liquid biopsy, and numerous methods, including optical, electrochemical, surface-enhanced Raman scattering (SERS), etc., have been developed for their detection. Due to the massive advancements in biology, material chemistry, and analytical technology, it is necessary to review the progress in this field from both medical and chemical sides. Liquid biopsy is considered a revolutionary technique that is opening unexpected perspectives in the early diagnosis and, in therapy monitoring, severe diseases, including cancer, metabolic syndrome, autoimmune, and neurodegenerative disorders. Although nanotechnology based on graphene has been poorly applied for the rapid diagnosis of viral diseases, the extraordinary properties of graphene (i.e., high electronic conductivity, large specific area, and surface functionalization) can be also exploited for the diagnosis of emerging viral diseases, such as the coronavirus disease 2019 (COVID-19). This review aimed to provide a comprehensive and in-depth summarization of the contribution of graphene-based nanomaterials in liquid biopsy, discussing the remaining challenges and the future trend; moreover, the paper gave the first look at the potentiality of graphene in COVID-19 diagnosis.

11.
Mar Drugs ; 18(4)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340389

RESUMO

The current emergency due to the worldwide spread of the COVID-19 caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a great concern for global public health. Already in the past, the outbreak of severe acute respiratory syndrome (SARS) in 2003 and Middle Eastern respiratory syndrome (MERS) in 2012 demonstrates the potential of coronaviruses to cross-species borders and further underlines the importance of identifying new-targeted drugs. An ideal antiviral agent should target essential proteins involved in the lifecycle of SARS-CoV. Currently, some HIV protease inhibitors (i.e., Lopinavir) are proposed for the treatment of COVID-19, although their effectiveness has not yet been assessed. The main protease (Mpr) provides a highly validated pharmacological target for the discovery and design of inhibitors. We identified potent Mpr inhibitors employing computational techniques that entail the screening of a Marine Natural Product (MNP) library. MNP library was screened by a hyphenated pharmacophore model, and molecular docking approaches. Molecular dynamics and re-docking further confirmed the results obtained by structure-based techniques and allowed this study to highlight some crucial aspects. Seventeen potential SARS-CoV-2 Mpr inhibitors have been identified among the natural substances of marine origin. As these compounds were extensively validated by a consensus approach and by molecular dynamics, the likelihood that at least one of these compounds could be bioactive is excellent.


Assuntos
Antivirais/farmacologia , Betacoronavirus/enzimologia , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/química , Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , COVID-19 , Proteases 3C de Coronavírus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Cisteína Endopeptidases , Bases de Dados de Compostos Químicos , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Inibidores de Proteases/química , Inibidores de Proteases/uso terapêutico , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
12.
Plants (Basel) ; 9(2)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085514

RESUMO

Natural compounds are a prominent source of novel antiviral drugs. Several reports have previously shown the antimicrobial activity of pistachio polyphenol extracts. Therefore, the aim of our research was to investigate the activity of polyphenol-rich extracts of natural shelled (NPRE) pistachios kernels (Pistacia vera L.) on herpes simplex virus type 1 (HSV-1) replication. The Vero cell line was used to assess the cytotoxicity and antiviral activity. The cell viability was calculated by detection of cellular ATP after treatment with various concentrations of NPRE. For antiviral studies, five nontoxic-concentrations (0.1, 0.2, 0.4, 0.6, 0.8 mg/mL) were tested. Our study demonstrated that treatment with NPRE (0.4, 0.6, 0.8 mg/mL) reduced the expression of the viral proteins ICP8 (infected cell polypeptide 8), UL42 (unique long UL42 DNA polymerase processivity factor) , and US11 (unique short US11 protein), and resulted in a decrease of viral DNA synthesis. The 50% cytotoxic concentration (CC50), 50% inhibitory concentration (EC50), and the selectivity index (SI) values for NPRE were 1.2 mg/mL, 0.4mg/mL, and 3, respectively. Furthermore, we assessed the anti-herpetic effect of a mix of pure polyphenol compounds (NS MIX) present in NPRE. In conclusion, our findings indicate that natural shelled pistachio kernels have remarkable inhibitory activity against HSV-1.

13.
ACS Appl Mater Interfaces ; 11(49): 46101-46111, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31729219

RESUMO

The theranostic ability of a new fluorescently labeled cationic cyclodextrin-graphene nanoplatform (GCD@Ada-Rhod) was investigated by studying its intracellular trafficking and its ability to deliver plasmid DNA and microRNA. The nanoplatform was synthesized by both covalent and supramolecular approaches, and its chemical structure, morphology, and colloidal behavior were investigated by TGA, TEM, spectroscopic analysis such as UV-vis, fluorescence emission, DLS, and ζ-potential measurements. The cellular internalization of GCD@Ada-Rhod and its perinuclear localization were assessed by FLIM, Raman imaging, and fluorescence microscopy. Biological experiments with pCMS-EGFP and miRNA-15a evidenced the excellent capability of GCD@Ada-Rhod to deliver both pDNA and microRNA without significant cytotoxicity. The biological results evidenced an unforeseen caveolae-mediated endocytosis internalization pathway (generally expected for particles <200 nm), despite the fact that the GCD@Ada-Rhod size is about 400 nm (by DLS and TEM data). We supposed that the internalization pathway was driven by physical-chemical features of GCD@Ada-Rhod, and the caveolae-mediated uptake enhanced the transfection efficiency, avoiding the lysosomal acid degradation. The cellular effects of internalized miRNA-15a on the oncogene protein BCL-2 were investigated at two different concentrations (N/P = 10 and 5), and a reduction of the BCL-2 level was detected at a low concentration (i.e., N/P = 10). miRNA-15a is considered an ideal cancer therapy molecule due to its activity on multiple transcription factors, and the elucidation of the correlation between the concentration of delivered miRNA-15a and the down-/up-regulation of the BCL-2 level, documented for the first time in this work, could be an important contribution to guide its clinical application.


Assuntos
Transporte Biológico , Técnicas de Transferência de Genes , MicroRNAs/farmacologia , Plasmídeos/farmacologia , Endocitose/efeitos dos fármacos , Endocitose/genética , Grafite/química , Humanos , Lisossomos/química , Lisossomos/genética , MicroRNAs/química , MicroRNAs/genética , Plasmídeos/química , Plasmídeos/genética , Transfecção , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia
14.
Nutrients ; 11(10)2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31623329

RESUMO

Due to their antimicrobial and antiviral activity potential in vitro, polyphenols are gaining a lot of attention from the pharmaceutical and healthcare industries. A novel antiviral and antimicrobial approach could be based on the use of polyphenols obtained from natural sources. Here, we tested the antibacterial and antiviral effect of a mix of polyphenols present in natural almond skin (NS MIX). The antimicrobial potential was evaluated against the standard American Type Culture Collection (ATCC) and clinical strains of Staphylococcus aureus, including methicillin-resistant (MRSA) strains, by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Herpes simplex virus type I was used for the antiviral assessment of NS MIX by plaque assay. Furthermore, we evaluated the expression of viral cascade antigens. NS MIX exhibited antimicrobial (MIC values of 0.31-1.25 mg/ml) and antiviral activity (decrease in the viral titer ** p < 0.01, and viral DNA accumulation * p < 0.05) against Staphylococcus aureus and HSV-1, respectively. Amongst the isolated compounds, the aglycones epicatechin and catechin showed the greatest activity against S. aureus ATCC 6538P (MIC values of 0.078-0.15 and 0.15 mg/ml, respectively), but were not active against all the other strains. These results could be used to develop novel products for topical use.


Assuntos
Anti-Infecciosos/farmacologia , Antivirais/farmacologia , Polifenóis/farmacologia , Prunus dulcis/química , Sementes/química , Animais , Chlorocebus aethiops , DNA Viral/análise , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/genética , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Polifenóis/isolamento & purificação , Staphylococcus aureus/efeitos dos fármacos , Células Vero/virologia
15.
Sci Rep ; 9(1): 5157, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914680

RESUMO

The nuclear factor κB (NF-κB) pathway plays a key role in innate and adaptive immunity, cell proliferation and survival, inflammation and tumors development. MiR-146a is an immune system regulator that has anti-inflammatory function in multiple cell types and conditions. Here we demonstrate activation of canonical NF-κB pathway in monocytic cells upon HSV-1 replication. By constructing and using a recombinant HSV-1\EGFP virus, we monitored the capability of the virus to recruit NF-κB and we report that the phosphorylation of p65 protein correlates with an active virus replication at single-cell level. In addition, we found that upregulation of miR-146a during viral replication is strictly dependent on NF-κB activation and correlates with tight control of the interleukin-1 receptor-associate kinase 1 (IRAK1). Accordingly, THP-1 DN IκBα cells, expressing a dominant negative mIκBα, did not show upregulation of miR-146a upon HSV-1 infection. Our data suggest that the expression of miRNA-146a modulates NF-κB activation through targeting IRAK1 during HSV-1 replication in THP-1 cells.


Assuntos
Herpesvirus Humano 1/fisiologia , MicroRNAs/metabolismo , Monócitos/metabolismo , NF-kappa B/metabolismo , Animais , Chlorocebus aethiops , Proteínas de Fluorescência Verde/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/crescimento & desenvolvimento , Humanos , Quinases Associadas a Receptores de Interleucina-1/metabolismo , MicroRNAs/genética , Mutação/genética , Fosforilação , Células THP-1 , Células Vero , Replicação Viral/fisiologia
16.
Chemistry ; 24(64): 16972-16976, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30198621

RESUMO

Two new tetralkylammonium-OPEs, bearing one or two positively charged groups directly linked to the aromatic residues and two ß-d-glucopyranose terminations, were synthesized. Their peculiar structural features, joining the biologically relevant sugar moieties, flat aromatic cores and positive charges, make these luminescent dyes soluble in aqueous media and able to strongly interact with DNA. As a result of UV/Vis spectral variations, DNA melting temperature measures, viscometric titrations and induced CD, we propose a partial insertion of the OPEs aromatic core into the helix, stabilized by glucose H-bonding with the groups accessible from the grooves. This interaction leads to the quenching of the OPE luminescence due to guanine reduction. The biocompatibility of the monocationic OPE with healthy and cancer cells, and the reduction of proliferation in HEp-2 cancer cells induced by the dicationic one, make this class of compounds promising for future biological applications.


Assuntos
Antineoplásicos/química , Carboidratos/química , Desenho de Fármacos , Polímeros/química , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Chlorocebus aethiops , Dicroísmo Circular , DNA/química , DNA/metabolismo , Humanos , Cinética , Espectrofotometria , Temperatura de Transição , Células Vero
17.
Viruses ; 10(1)2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29283386

RESUMO

The exposure to CCR5 (CC chemokine receptor 5) specific natural antibodies in vitro produces a Class B ß-arrestin2-dependent CCR5 retention with the aid of ERK1, due to the formation of a CCR5 signalosome, which remains stable for at least 48 h. Considering that ß-arrestins and MAPKs are receptive to environmental signals, their signal complexes could be one of the key junction for GPCRs internalization related signal transduction. Here, we demonstrate that, in T cells, the phosphorylation status of either CCR5 receptor or ERK1 protein is necessary to drive the internalized receptor into the early endosomes, forming the CCR5 signalosome. In particular, our data show that ß-arrestin2/ERK1 complex is a relevant transducer in the CCR5 signaling pathway. Understanding the mechanism of CCR5 regulation is essential for many inflammatory disorders, tumorigenesis and viral infection such as HIV.


Assuntos
Autoanticorpos/metabolismo , Endocitose/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Receptores CCR5/agonistas , Receptores CCR5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estaurosporina/farmacologia , Linhagem Celular , Endossomos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Receptores CCR5/ultraestrutura , beta-Arrestinas/antagonistas & inibidores , beta-Arrestinas/genética , beta-Arrestinas/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
18.
Viruses ; 9(7)2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28698509

RESUMO

The aim of the present research was to determine the effect of almond skin extracts on herpes simplex virus 1 (HSV-1) replication. Drug-resistant strains of HSV frequently develop following therapeutic treatment. Therefore, the discovery of novel anti-HSV drugs deserves great effort. Here, we tested both natural (NS) and blanched (BS) polyphenols-rich almond skin extracts against HSV-1. HPLC analysis showed that the prevalent compounds in NS and BS extracts contributing to their antioxidant activity were quercetin, epicatechin and catechin. Results of cell viability indicated that NS and BS extracts were not toxic to cultured Vero cells. Furthermore, NS extracts were more potent inhibitors of HSV-1 than BS extracts, and this trend was in agreement with different concentrations of flavonoids. The plaque forming assay, Western blot and real-time PCR were used to demonstrate that NS extracts were able to block the production of infectious HSV-1 particles. In addition, the viral binding assay demonstrated that NS extracts inhibited HSV-1 adsorption to Vero cells. Our conclusion is that natural products from almond skin extracts are an extraordinary source of antiviral agents and provide a novel treatment against HSV-1 infections.


Assuntos
Antivirais/farmacologia , Produtos Biológicos/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Extratos Vegetais/farmacologia , Prunus dulcis/química , Ligação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/toxicidade , Produtos Biológicos/toxicidade , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Cromatografia Líquida de Alta Pressão , Herpesvirus Humano 1/fisiologia , Extratos Vegetais/toxicidade , Reação em Cadeia da Polimerase em Tempo Real , Células Vero , Ensaio de Placa Viral
19.
Biomacromolecules ; 18(4): 1134-1144, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28257182

RESUMO

In the development of new antibacterial therapeutic approaches to fight multidrug-resistant bacteria, antimicrobial photodynamic therapy (aPDT) represents a well-known alternative to treat local infections caused by different microorganisms. Here we present a polypropylene (PP) fabric finished with citrate-hydroxypropyl-ßCD polymer (PP-CD) entrapping the tetra-anionic 5,10,15,20-tetrakis(4-sulfonatophenyl)-21H,23H-porphine (TPPS) as photosensitizer-eluting scaffold (PP-CD/TPPS) for aPDT. The concept is based on host-guest complexation of porphyrin in the cavities of CDs immobilized on the PP fibers, followed by its sustained and controlled delivery in release medium and simultaneous photoinactivation of microorganisms. Morphology of fabric was characterized by optical (OM) and scanning electron microscopies (SEM). Optical properties were investigated by UV-vis absorption, steady- and time-resolved fluorescence emission spectroscopy. X-ray photoelectron spectroscopy (XPS) and FT-IR revealed the surface chemical composition and the distribution map of the molecular components on the fabric, respectively. Direct 1O2 determination allowed to assess the potential photodynamic activity of the fabric. Release kinetics of TPPS in physiological conditions pointed out the role of the CD cavity to control the TPPS elution. Photoantimicrobial activity of the porphyrin-loaded textile was investigated against both Gram-positive Staphylococcus aureus ATCC 29213 (S. aureus) and Gram-negative Pseudomonas aeruginosa ATCC 27853 (P. aeruginosa). Optical microscopy coupled with UV-vis extinction and fluorescence spectra aim to ascertain the uptake of TPPS to S. aureus bacterial cells. Finally, PP-CD/TPPS fabric-treated S. aureus cells were photokilled of 99.98%. Moreover, low adhesion of S. aureus cells on textile was established. Conversely, no photodamage of fabric-treated P. aeruginosa cells was observed, together with their satisfying adhesion.


Assuntos
Anti-Infecciosos/farmacologia , Ácidos Carboxílicos/química , Ciclodextrinas/química , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Têxteis , Microscopia Eletrônica de Varredura , Fotoquimioterapia , Espectroscopia Fotoeletrônica , Polipropilenos/química , Porfirinas/química , Pseudomonas aeruginosa/efeitos dos fármacos , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos
20.
Colloids Surf B Biointerfaces ; 146: 590-7, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27424090

RESUMO

The combination of conventional anticancer therapy with other treatment modalities such as photodynamic therapy (PDT) is paving the way to novel more effective treatment of solid tumors via light exposure. With this idea in mind, in this paper, nanoparticles (NPs) based on Heptakis (2-oligo(ethyleneoxide)-6-hexadecylthio-)-ß-CD (SC16OH) for dual delivery of Zinc-Phthalocyanine (ZnPc) and Docetaxel (DTX) were developed pointing to their potential application as nanomedicine for the combined photodynamic and chemo-therapy of solid tumors. NPs prepared by the emulsion-solvent evaporation technique displayed a hydrodynamic diameter of ≅ 200nm, a negative zeta potential (≅ -27mV) and a satisfactory entrapment efficiency of both drugs at a specific mass ratio. On these bases, NPs containing DTX and ZnPc with theoretical loading of 5% and 0.2% respectively (ZnPc/DTX5-NPs) were selected for further investigations. The allocation of ZnPc and DTX into the colloid was investigated by complementary spectroscopic techniques. In particular, fluorescence emission studies showed the entrapment of ZnPc as a monomer in the carrier, with a low tendency to self-aggregate and consequently a fairly high propensity to photogenerate singlet oxygen. The interaction of SC16OH with DTX, co-entrapped with ZnPc, was elucidated by (1)H NMR and 2D ROESY, which suggested the presence of the chemotherapeutic in the hydrophobic portion of SC16OH. ZnPc/DTX5-NPs were fairly stable in different biological relevant media within 24h. Finally, in vitro potential of the nanoassembly was evaluated in HeLa cancer cells by cell viability exploring both effects of DTX and ZnPc. Overall, results suggest the suitability of NPs based on SC16OH for delivering a combination of DTX with ZnPc to cancer cells, thus inducing photodynamic and antimitotic effects.


Assuntos
Ciclodextrinas/química , Indóis/química , Compostos Organometálicos/química , Tensoativos/química , Taxoides/química , Sobrevivência Celular/efeitos dos fármacos , Docetaxel , Células HeLa , Humanos , Indóis/farmacologia , Isoindóis , Compostos Organometálicos/farmacologia , Taxoides/farmacologia , Compostos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA